
Η φιλοσοφία των μαθηματικών γεννήθηκε με τον Πλάτωνα (423 – 347 π.Χ.). Για τον Πλάτωνα τα μαθηματικά μελετούν αντικείμενα άυλα, άχρονα ή αιώνια και ανεξάρτητα τόσο από τα περιεχόμενα του φυσικού κόσμου όσο και από τον ανθρώπινο νου που απλώς ανακαλύπτει τις ιδιότητες της αυθυπόστατης μαθηματικής πραγματικότητας. Η πίστη του Πλάτωνα στην ύπαρξη αυτής της πραγματικότητας έχει στιγματιστεί ως φιλοσοφική δεισιδαιμονία, αλλά συνιστά το πρώτο κεφάλαιο στην ιστορία της φιλοσοφίας των μαθηματικών, και την μοιράστηκαν πολλοί από τους μαθηματικούς που διαμόρφωσαν τα σύγχρονα μαθηματικά. Αυτό το βιβλίο επιχειρεί μια παρουσίαση των απόψεων του Πλάτωνα για τα μαθηματικά —που στην εποχή του περιλαμβάνουν και την αστρονομία—, της επίδρασης την οποία άσκησαν τα μαθηματικά στη διαμόρφωση της σκέψης του, καθώς και του ρόλου που έπαιξε ο πλατωνισμός στη διαμόρφωση των σύγχρονων μαθηματικών. Απευθύνεται στους ιστορικούς των μαθηματικών, της επιστήμης, της φιλοσοφίας και των ιδεών, στους κλασικούς φιλολόγους και στους αναγνώστες που ενδιαφέρονται για την αρχαία ελληνική φιλοσοφία και επιστήμη.
Η σειρά «Αρχαία Επιστημονική Γραμματεία / Μελέτες» φιλοξενεί μελέτες που πραγματεύονται την αρχαία ελληνική επιστήμη. Περιλαμβάνει έργα για όλο το εύρος της αρχαίας επιστημονικής γραμματείας, για τις σχέσεις των επιστημών με άλλα γνωστικά πεδία όπως η ρητορική και η φιλοσοφία, για τις υλικές και κοινωνικές συνθήκες δημιουργίας και διαμόρφωσης του επιστημονικού λόγου, τη διάδοση και την πρόσληψη των επιστημονικών ιδεών, την παράδοση των επιστημονικών κειμένων, την εκπαίδευση κ.ά. Η σειρά συμπεριλαμβάνει κατά προτεραιότητα τίτλους της νεότερης συγγραφικής παραγωγής, οι οποίοι αποτυπώνουν τις σύγχρονες ιστοριογραφικές τάσεις.
ΕΤ: Tο βιβλίο υπάγεται στον Nόμο περί Eνιαίας Tιμής Bιβλίου, δηλαδή ισχύει μέγιστη έκπτωση 10%.
ΠΕΡΙΕΧΟΜΕΝΑ
Εισαγωγή
I. Ο πλατωνισμός στα μαθηματικά
1. Ο αντιπλατωνισμός του Αριστοτέλη και του Kant
2. Ο πλατωνισμός του Cantor
3. Ο πλατωνίζων λογικισμός του Dedekind και του Frege
4. Ο αντιπλατωνικός λογικισμός του Russell
5. Ο ιντουισιονισμός
6. Ο πλατωνισμός και τα μαθηματικά
7. Το πρόγραμμα του Hilbert και ο πλατωνισμός
του Gödel
ΙΙ. Το ηθικό και πολιτικό πλαίσιο του πλατωνισμού στην Πολιτεία
ΙΙΙ. H Πολιτεία
1. Η θέση της Πολιτείας στο πλατωνικό corpus
2. Μια περίληψη της Πολιτείας
ΙV. Τα μαθηματικά και η φιλοσοφία
1. Η διάκριση μαθηματικών και φιλοσοφίας στην Πολιτεία
2. Τα όντα στον Παρμενίδη
3. Η δυνατότητα απόκτησης γνώσης των ιδεών
V. Η ιδέα του αγαθού και τα θεμέλια των μαθηματικών
1. Η μεταφορά του ενιαίου συστήματος των φθόγγων για την ιδέα του αγαθού
2. Το οντολογικό θεμέλιο των μαθηματικών ως ενιαίο σύστημα στοιχείων
3. Η μεταφορά του ενιαίου συστήματος των μουσικών νοτών για την ιδέα του αγαθού
4. Η ιδέα του αγαθού και το ανθρώπινο αγαθό
5. Η ιδέα του αγαθού και η ιδέα του κάλλους
VI. Ο έλεγχος των εννοιολογικών θεμελίων των μαθηματικών
VII. Ο έλεγχος του ορισμού του αριθμού στην Πολιτεία
1. Το πρώτο μέρος του ελέγχου
2. Το δεύτερο μέρος του ελέγχου
3. Ο Αριστοτέλης, οι ειδητικοί και οι μαθηματικοί αριθμοί
VIII. Η γεωμετρία στην Πολιτεία
1. Η γεωμετρία ως μελέτη του όντος και η ασυμμετρία
2. Ο διπλασιασμός του κύβου
3. Η θεωρία των ομόκεντρων σφαιρών του Ευδόξου
IX. ἴσως τοίνυν πλείων ἂν δικαιοσύνη ἐν τῷ μείζονι ἐνείη καὶ ῥᾴων καταμαθεῖν
1. Ο ουρανός ως μεταφορά για το σύμπαν των ιδεών
2. Ο ουρανός του Πλάτωνα
3. Οι απλανείς αστέρες και η ουράνια σφαίρα
4. Η Σελήνη, ο Ήλιος και οι πέντε πλανήτες
5. Οι αρχαιότερες σωζόμενες αστρονομικές πραγματείες
6. Η αστρονομία του Γλαύκωνα στο έβδομο βιβλίο της Πολιτείας
7. Στερεομετρία και αστρονομία
8. Η γεωμετρικοποιημένη αστρονομία του μέλλοντος
9. Η αστρονομία και το αγαθό
10. Το αγαθό στον ουρανό ως παράδειγμα για το ανθρώπινο αγαθό
11. Η κοσμική ψυχή στον Τίμαιο
12. Ο μύθος του Φαίδωνα
13. Ο μύθος του Φαίδρου
Επίλογος
Βιβλιογραφία
Πίνακας χωρίων
Ευρετήριο